

Apport des méthodes d'apprentissage par réseaux de neurones à la caractérisation des écoulements polyphasiques par acquisition et traitement d'images

Kassem DIA¹, Fabrice LAMADIE², Johan DEBAYLE³

¹CEA, DES, LITEN, DTNM, Univ Grenoble, Grenoble, France ²CEA, DES, ISEC, DMRC, Univ Montpellier, Bagnols-sur-Ceze, Marcoule, France ³MINES Saint-Etienne, SPIN/LGF UMR CNRS 5307, 158 cours Fauriel, Saint-Etienne, France

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Introduction

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024

1. Introduction

- Contexte et objectif
- État de l'art
- 2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires
 - Approche proposée
 - Modélisation stochastique et évaluation des images synthétiques
 - Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Contexte et Objectif

L'un des objectifs du CEA est d'étudier les procédés dédiés à l'extraction ou au recyclage des métaux critiques et des terres rares.

Contexte et Objectif

Acquisition 2D par *ombroscopie* sur un écoulement gaz-liquide

Écoulement multiphasique - propriétés d'intéret:

- Vitesse des différentes phases,
- Informations dimensionnelles de la phase dispersée:
 - Distribution de taille,
 - Surface d'échange (Aire interfaciale),
 - Fraction volumique (Hold-up),
 - Morphologie and déformabilité.
- Transfert entre les phases.

Focus de cette présentation

1. Introduction

- Contexte et objectif
- État de l'art
- 2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires
 - Approche proposée
 - Modélisation stochastique et évaluation des images synthétiques
 - Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

État de l'art

Techniques déterministes:

Fu & Liu [2019]

Segmentation:

- Classification (k-means, ...),
- Segmentation morphologique,
- Etc.

Detection:

- Transformée d'Hough,
- Détection instantanée d'objets,
- Etc.

Zhang & al. [2012]

Kim & Park [2021]

Zafari & al. [2015]

Théodon & al. [2021]

Kracht & al. [2013]

radius r (mm)

Techniques probabilistes:

- Fitting de modèles probabilistes aux données réelles, - Extraction des propriétés morphologiques des particules,

De Langlard & al. [2018a]

Comparison

- Inférence statistique.

)rthogo

(b)

(c)

Not converged: Model Fitting

onverged:

Realization of the 3D

hard-core spheres model

Volume fraction. Surface fraction

Size distribution, Characteristic diameters,

(a)

8

54 - Caractérisation des écoulements gaz-liquide à différentes échelles

2 Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

Approche proposée

- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Approche proposée

Acquisition et prétraitement

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Modèle Germe-Grain 3D proposé:

Modèle Germe-Grain 3D proposé: Grains ellipsoïdaux

Un grain typique G(x, m, t) a comme marque $m = (a, \epsilon, v)$

Modèle Germe-Grain 3D proposé: Projection 2D pour la génération d'images

Résultat final

Modèle Germe-Grain 3D proposé: Projection 2D pour la génération d'images

Projection et discrétisation

Modèle Germe-Grain 3D proposé: Projection 2D pour la génération d'images

Projection et discrétisation

Modèle Germe-Grain 3D proposé: Projection 2D pour la génération d'images

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

Générer une base de données d'images d'entraînement labélisées avec des informations 3D :

Base de données

Label

Couche de sortie peut être:

- ✓ Distribution de la taille des particules (*PSD*),
- \checkmark Surface d'échange ,
- ✓ Hold-up ϕ ,
- ✓ Morphologie et déformabilité...

Architecture des réseaux de neurone convolutif

- Temps d'apprentissage ≈ 30min / 150
 epoch en utilisant 4 cœurs de NVIDIA
 V100
- Temps de modélisation d'une image < 1s

Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

Architectures des réseaux proposées:

T54 - Caractérisation des écoulements gaz-liquide à différentes échelles

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024 **19**

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Tank containing the mixture

Photron CMOS

54 - Caractérisation des écoulements gaz-liquide à différentes échelles

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

MINES

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

24

14/11/2024

MINES

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024

MINES

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

MINES

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

Application à un Écoulement gaz-liquide

T54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024 **25**

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Technique d'acquisition: Ombroscopie

Binarisation des acquisitions

Nombre d'images par expérience: 4000 images

CEE MINES Saint-Etienne Institut Mines-Telécom J **X**₂

 \mathbf{X}_1

Binarisation des acquisitions

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

CEE MINES Saint-Etienne Institut Mines-Télécom

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024

polynôme.

14/11/2024

30

polynôme.

CEE MINES Saint-Elterne

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024

polynôme.

CCCA MINES Saint-Etienne

T54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024

polynôme.

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Comparaison entre les images générées et les images réelles:

Prédiction des informations morphologiques:

Mesure de la fraction volumique $\widetilde{\phi}$

$$\tilde{\phi}_{\dot{Q}} = \frac{\Delta_{\dot{Q}} \times l \times L}{V}$$

- $\Delta_{\dot{O}}$ élévation de la phase continue
- *l* profondeur de la cuve
- *L* largeur de la cuve

Prédiction de la fraction volumique ϕ

Prédiction des informations morphologiques:

Distributions mesurée par approche déterministe [de Langlard & al.[2018]]:

Distributions du grand axe *a*:

Prédiction des informations morphologiques:

Distributions mesurée par approche déterministe [de Langlard & al.[2018]]:

Distributions d'élongation ϵ :

5 Conclusion et perspectives

JT54 - Caractérisation des écoulements gaz-liquide à différentes échelles

14/11/2024 **36**

1. Introduction

- Contexte et objectif
- État de l'art

2. Combinaison modèles 3D germe-grain et machine learning pour la caractérisation d'images de systèmes particulaires

- Approche proposée
- Modélisation stochastique et évaluation des images synthétiques
- Estimation des propriétés 3D à partir d'une image 2D à l'aide de l'apprentissage automatique

3. Validation expérimentale

- Dispositif expérimental
- Résultats

4. Application à un Écoulement gaz-liquide

- Dispositif expérimental
- Définition des paramètres du modèle de particules sphéroïdales
- Résultats

Conclusion et perspectives

Conclusion

- 1. Enrichissement du **modèle stochastique 3D** pour prendre en compte:
 - 1. Les facteurs de forme (corrélation taille/forme).
 - 2. Les inhomogénéités spatiales.
 - 3. L'orientation des particules.
- Liens entre les propriétés 3D et les réalisations
 2D:
 - a. Identification des réseaux de neurones adaptés.
 - b. Architecture appropriée.
- 3. Emploi de la FID pour l'évaluation de la vraisemblance des images générées.

Perspectives

1. Extension du modèle aux **formes de particules non sphériques** et prendre en compte de la structure de l'écoulement pour des modélisations plus réalistes et dynamiques.

2. Exploration des réseaux multi-sorties afin de prédire plusieurs propriétés simultanément et développement d'outils d'analyse en temps réel.

Références

Shao & al. [2020] Siyao Shao, Kevin Mallery, and Jiarong Hong. "Machine learning holography for measuring 3D particle distribution". In: Chemical Engineering Science 225 (2020).

Talbot & al. [2002] Hugues Talbot. "Elliptical distance transforms and the object splitting problem". In: CSIRO Mathematical and Information Sciences (2002).

Fu & al. [2016] FU, Y. et Y. LIU. 2016, «Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel», *International Journal ofMultiphase Flow*, vol. 84, p. 217–228.

Kim & Park [2021] Yewon Kim and Hyungmin Park. "Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows". In: Scientific reports 11.1 (2021), p. 8940. issn: 20452322.

Zhang & al. [2012] Wen Hui Zhang, Xiaoya Jiang, and Yin Mingzi Liu. "A method for recognizing overlapping elliptical bubbles in bubble image". In: Pattern Recognition Letters 33.12 (2012), pp. 1543–1548. issn: 01678655.

Fu & Liu [2019] Yucheng Fu and Yang Liu. "BubGAN : Bubble generative adversarial networks for synthesizing realistic bubbly flow images". In: Chemical Engineering Science 204 (2019), pp. 35–47. issn: 0009-2509.

Zafari & al. [2015] Sahar Zafari et al. "Segmentation of partially overlapping nanoparticles using concave points". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9474.May 2016 (2015), pp. 187–197.

Eremina & al. [2021] Local Measures Distribution for the Estimation of the Elongation Ratio of the Typical Grain inHomogeneous Boolean Models. Image Analysis and Stereology, 40(2)

Références

Kracht & al. [2013] W Kracht, X Emery, and C Paredes. "A stochastic approach for measuring bubble size distribution via image analysis". In: International Journal of Mineral Processing 121 (2013), pp. 6–11. issn: 0301-7516.

Théodon & al. [2021] Léo Theodon, Tatyana Eremina, Kassem Dia, Fabrice Lamadie, Jean-Charles Pinoli, Johan Debayle. (2021). "Estimating the Parameters of a Stochastic Geometrical Model for Multiphase Flow Images Using Local Measures." Image Analysis and Stereology, 40(3), 115-125.

De Langlard & al. [2018] Mathieu de Langlard et al. "An efficiency improved recognition algorithm for highly overlapping ellipses: Application to dense bubbly flows". In: Pattern Recognition Letters 101 (2018), pp. 88–95. issn: 01678655.

De Langlard & al. [2018a] Mathieu de Langlard et al. "A 3D stochastic model for geometrical characterization of particles in two-phase flow applications". In: Image Analysis and Stereology 37.3 (2018), pp. 233–247. issn: 18545165.

Matérn [2013] Bertil Matérn. Spatial Variation. 5. 2014.

Stoyan & Stoyan [1985] Dietrich Stoyan and Helga Stoyan. "On One of Matérn's Hard-core Point Process Models". In: Mathematische Nachrichten 122.1 (1985), pp. 205–214.

Dia & al. [2023] Kassem Dia, Fabrice Lamadie, Johan Debayle. (2023). "Retrieving mean volumetric properties of multiphase flows from 2D images: A new approach combining deep learning algorithms and 3D modelling." Chemical Engineering Science, Volume 279, 118933, ISSN 0009-2509.

Merci pour votre attention !!

