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• One design solution for wall cooling is to run a heat carrier fluid in canals within the wall

• Boiling of the heat carrier is wanted but makes heat transfers challenging to predict

• Boiling is a complex phenomenon, with different regimes and strong temperature gradients

Gaseous/

multiphase

heat

carrier

Liquid

heat

carrier
Heat exchanger

Heat

Transfer

Heat source

Final aim : describe experimentally the heat transfer at play in a 

boiling heat exchanger with forced convection at system scale
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Final aim : describe experimentally the heat transfer at play in a 

boiling heat exchanger with forced convection at system scale
Today’s presentation :

obtaining temperature fields on the exchange surface
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1. Experimental setup and flow morphology

2. Phosphor thermometry setup

3. Results

4. Validation



2D Surface Phosphor Thermometry In A Shallow Boiling 

Water Channel

4
 m

m

40 mm

Thermocouples

Optical access

Resistors

Exchange 
surface

Multiphase heat exchanger experimental setup – REMED

4

𝑈𝑤𝑎𝑡𝑒𝑟 (𝑙𝑖𝑞)
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Flow direct visualisation (top view)
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Surface heating power density: 0.17 MW/m², flowrate: 31 kg/m²/s, 200 frames/s

Flow direction

III 
Liquid/vapor mix

I 
Quasi-liquid

II 
Liquid/vapor frontier

oscillation

Several distinct unsteady flow regimes, small spatial scales

1 cm
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Flow direct visualisation (top view)
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Surface heating power density: 0.17 MW/m², flowrate: 31 kg/m²/s, 200 frames/s

Flow direction

III 
Liquid/vapor mix

I 
Quasi-liquid

II 
Liquid/vapor frontier

oscillation

Several distinct unsteady flow regimes, small spatial scales

1 cm

But what about flow stratification?
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Uncovering the flow stratification with amino-g PLIF
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355 nm 10 mJ

20 Hz

: Vapor

: Liquid

• 𝜌𝑣𝑎𝑝 ≪ 𝜌𝑙𝑖𝑞

• 𝐼𝑓𝑙𝑢𝑜𝑣𝑎𝑝
≪ 𝐼𝑓𝑙𝑢𝑜𝑙𝑖𝑞

⇒ Amino-g acid acts

as a liquid phase 
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Collier, J.G.; Thome, J.R. Convective Boiling and Condensation, 3rd ed., reprint 2001 ed.; The Oxford Engineering Science Series; Clarendon Press: Oxford, UK; Oxford University Press: New York, NY, USA, 2001; p. 38
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⇒ Flow regimes are 

comparable to the 

well-known horizontal 

heated pipe 

configuration

Collier, J.G.; Thome, J.R. Convective Boiling and Condensation, 3rd ed., reprint 2001 ed.; The Oxford Engineering Science Series; Clarendon Press: Oxford, UK; Oxford University Press: New York, NY, USA, 2001; p. 38
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Wall thermometry in multiphase flows

 Need for a front-facing measurement through boiling water

• Infrared: water interacts with IR wavelengths

• Thermal Sensitive Paints (organic): cannot withstand 100 °C

➔ Phosphor thermometry (JT 52 ☺)!
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1. Experimental setup and flow morphology

2. Phosphor thermometry setup

3. Results

4. Validation
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✓ Space- and time- resolved

✓ Limited intrusiveness

✓ Resilience to 2-phase flow

✓ Optical path independence
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✓ Space- and time- resolved

✓ Limited intrusiveness

✓ Resilience to 2-phase flow

✓ Optical path independence

x But typical phosphor sensitivities are relatively*

low (0.1 – 0.5 %/K) 

* typical values for infrared : 5%/K; organic TSPs : 2-10 %/K
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Lifetime phosphor thermometry
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Why lifetime phosphor thermometry ?

✓ Space- and time- resolved

✓ Limited intrusiveness

✓ Resilience to 2-phase flow

✓ Optical path independence

x But typical phosphor sensitivities are relatively*

low (0.1 – 0.5 %/K) 

⇒ What if we could maximize the phosphor

sensitivity in the vicinity of the boiling point ?

* typical values for infrared : 5%/K; organic TSPs : 2-10 %/K
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Dial-a-range phosphor thermometry : (Sc1-xYx)VO4:Bi3+

• Developed by Elashry et al. 

2023 [4]

• Sensitivity and range are 

tuned by adjusting the Sc/Y 

concentrations

• Useful temperature range for 

𝑥 = 0.8: [50, 150] ºC

• Sensitivity ∈ [1, 2.5] %/K ☺

11

[4] M. Elashry, A. Rashed, L. Dalipi, U. Betke, C. Abram, and B. Fond, “Bismuth-doped rare-earth 

orthovanadates as tunable luminescence decay-time thermometers.” Optica Open (preprint) 

(Sc1-xYx)VO4:Bi3+ decay time and relative sensitivity

temperature dependence [4]

In-house mixing-and-firing chemical synthesis

(Sc0,2Y0,8)VO4:Bi3+ after firing 
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(full window)



2D Surface Phosphor Thermometry In A Shallow Boiling 

Water Channel 13

1. Experimental setup and flow morphology

2. Phosphor thermometry setup

3. Results

4. Validation
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Focus on a single dryout event
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Instantaneous temperature fields during a dryout

event

Direct visualisation of 

the dryout event

Run ID 12r

Heating power 

density
0.20 MW/m²

Mass flow rate 19 kg/m²/s

Thermometry 

framerate
10 Hz

Visualisation 

framerate
500 Hz

Flow direction
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Focus on bubble departure events (annular flow)
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Run ID 3

Heating power 

density
0.10 MW/m²

Mass flow rate 13 kg/m²/s

Thermometry 

framerate
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framerate
500 HzInstantaenous temperature field during a bubble growth 

event (top), temperature field under 2 bubbles (bottom)

Direct visualisation of the 

bubble growth event

Bubble 

temperature

drops

Flow direction
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Bubble 

temperature

drops

Flow direction



2D Surface Phosphor Thermometry In A Shallow Boiling 

Water Channel

Time-averaging

16

Run ID 28

Heating power density 0.20 MW/m²

Mass flow rate 32 kg/m²/s

Phosphor thermometry

framerate
10 Hz

Acquisition duration 100 s
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Average temperature field over 1000 shots, 10 Hz 
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Acquisition duration 100 s
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Cold spot :

• favorable bubble

formation site

• Average overheat : 

~5°C

Run ID 28

Heating power density 0.20 MW/m²

Mass flow rate 32 kg/m²/s

Phosphor thermometry

framerate
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Acquisition duration 100 s
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Time-averaging
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Average temperature field over 1000 shots, 10 Hz 

Cold spot :

• favorable bubble

formation site

• Average overheat : 

~5°C

Hot spots :

• Low ebullition

• Average overheat : 

~15°C

Run ID 28

Heating power density 0.20 MW/m²

Mass flow rate 32 kg/m²/s

Phosphor thermometry

framerate
10 Hz

Acquisition duration 100 s
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Time-averaging

16

Average temperature field over 1000 shots, 10 Hz 

• ~1 mm effective 

spatial resolution

• Overheating

assessment

• Detection of 

nucleation sites

• Detection of 

favorable/unfavora

ble zones
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1. Experimental setup and flow morphology

2. Phosphor thermometry setup

3. Results

4. Validation
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Comparison to thermocouple data (time-averaged)
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• Surface temperature data can be

reconstructed from sub-surface

thermocouples using inverse methods

• This low-resolution data can then be

compared to the phosphor thermometry

data

:  Type K thermocouple 

(experimental data)

: Joule heating (constant flux)

: Adiabatic wall

: Free surface

Boiling flow (illustrative only)
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Run ID 28

Heating power density 0.20 MW/m²

Mass flow rate 32 kg/m²/s
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Comparison to thermocouple data (time-averaged)
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Run ID 28

Heating power density 0.20 MW/m²

Mass flow rate 32 kg/m²/s

• Good agreement 

between time- and 

spaced-averaged

temperature data 

and inverse method

data on most runs

• Some particular

operating 

conditions (3 out of 

15) have a ~3K 

discrepancy

(currently being

investigated)
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• PT Measurements

– At uniform wall temperature (no 

heating, system close to thermal 

equilibrium) 

– Through vapor bubbles

(generated upstream)

• The measured temperature field

should be quasi-uniform
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Assessing the measurement uncertainty through a single 
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• PT Measurements

– At uniform wall temperature (no 
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(generated upstream)
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Flow 

direction

Instantaenous wall temperature (°C)

Liquid

water 

Assessing the measurement uncertainty through a single 

bubble

• PT Measurements

– At uniform wall temperature (no 

heating, system close to thermal 

equilibrium) 

– Through vapor bubbles

(generated upstream)

• The measured temperature field

should be quasi-uniform

20

Vapor

bubble

Instantaenous luminescence intensity

First frame (counts) Second frame (counts)

Vapor

bubble

Liquid

water 

Vapor

bubble

Liquid

water 

• As expected the measurement is 

similar through the liquid and the 

bubble

• Shadows lowers the SNR but do 

not affect the mean value

• Typical single shot 𝝈𝜽 at uniform

temperature : 2 K
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Conclusions

✓A phosphor has been tuned to this application to achieve maximum sensitivity

✓2D unsteady temperature measurements have been acquired through a boiling flow 

with PT for the first time 

✓Average temperature fields have been validated against TC data

✓Dryout and bubble growth events have been measured

✓In harsh and/or optically challenging environements, phosphor thermometry can save

your life!
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What’s next?

➢ Heat transfer coefficient fields are currently being estimated

➢ Application to realistic geometries
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Thank you for your attention!

1 cm

: Direct visualisation

: Temperature field Flow direction
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